9 research outputs found

    Systematics and signalling of Madagascan chameleons of the Calumma nasutum group

    Get PDF
    Background Madagascar is famous for its biodiversity and exceptional degree of endemism, especially in chameleons, hosting almost half of the world’s species. The exploration of its species diversity started with the famous Georges Cuvier who described the first Madagascan chameleons in 1829. Since then, the quality of species descriptions and, subsequently, the species concepts have substantially changed. While the first descriptions were based on a few characters of the external morphology only, today the collected specimens are usually DNA barcoded and their taxonomic status is evaluated based on genetic distances as a first step. In doing so, a previous molecular study of the Calumma nasutum group, which are small chameleons with a rostral appendage on the snout tip in most species, resulted in an impressive 33 deep mitochondrial lineages. Only seven of these corresponded to named species leaving 26 lineages as operational taxonomic units (OTUs). In times of DNA based taxonomy and species delimitation algorithms taxonomists face new challenges of how to describe a species and to avoid oversplitting. In this dissertation I evaluate, based on a taxonomic revision of Calumma nasutum group, the significance of mitochondrial lineages for species delimitation and promote micro-computed tomography (micro-CT) as an additional tool for integrative taxonomy. The second part deals with the discovery of the phenomenon of widespread fluorescence in chameleons. Biofluorescence is only rarely found in land vertebrates, so far, but has been reported for several marine organisms where it is used, inter alia, for intraspecific communication. As chameleons also communicate visually, the fluorescent pattern might work as an additional signal for species recognition. Methods and Procedure To describe (or redescribe) species of the Calumma nasutum group, I followed an integrative taxonomic approach incorporating five lines of evidence (for details, see below): External Morphology, micro-CT-scans of the skulls, dice-CT scans of the hemipenes, mitochondrial gene sequences (ND2), and nuclear gene sequences (CMOS). In the Calumma nasutum group a number of species have remained poorly characterized, because their original descriptions date to over a century ago and lack precise locality data, or because the holotype is a juvenile specimen. These species were redescribed here using a combination of micro-CT scans and detailed study of external morphology. With the help of diagnostic characters of the skull, the old type specimens were matched to recently collected and sequenced specimens. Additionally, micro-CT scanning was used for the first time to produce 3-dimensional models of chameleon hemipenes. In preparation for scanning, each hemipenis was removed from the specimen and immersed in iodine solution for several days to enhance the contrast when X-raying this soft tissue. This method is called dice-CT, and the resulting scans provide a more objective and detailed illustration of the hemipenes than the conventional 2-dimensional drawings. Further, sequences of mitochondrial (ND2) and nuclear (CMOS) genes were analysed for most of the new species described here. To provide comparability, access, and fast taxonomic progress, all new species were registered at ZooBank with an LSID number, their sequences were uploaded to GenBank, and all taxonomic acts were published in open access journals. To study fluorescence in chameleons, we used a fluorimeter to measure the excitation and emission spectra and to calculate the quantum yield for the intensity of fluorescence. The distribution of the fluorescent tubercles was recorded with photographs under UV light illumination, and the bony origins of fluorescence were studied using micro-CT and Transmission Electron microscopy of histological sections. Conclusions The taxonomic part or this dissertation resulted in the description of eight new chameleon species, "Calumma emelinae", C. gehringi, C. juliae, C. lefona, "C. ratnasariae", C. roaloko, "C. tjiasmantoi", and C. uetzi (see chapter 3.1.2, 3.1.3, 3.1.4, 3.1.5), contributing nearly 4% of all known species of the family Chamaeleonidae. Furthermore, one species, C. radamanus (Mertens, 1933) was revalidated, five species, C. boettgeri (Boulenger, 1888), C. fallax (Mocquard, 1900), C. guibei (Hillenius, 1959), C. linotum (MĂŒller, 1924), and C. nasutum (DumĂ©ril & Bibron, 1836) were redescribed, and the females of C. vatosoa Andreone, Mattioli, Jesu & Randrianirina, 2001 were described for the first time. Using an integrative taxonomic approach, I showed that current species delimitation algorithms based on mitochondrial gene sequences alone greatly overestimate the actual number of species. Micro-CT proved essential for analysing skull morphology, which resulted more appropriate for species delimitation than some highly variable external characters. Further, this tool enabled to find frontoparietal fenestrae, which are cranial openings of potential adaptive importance found only in chameleon species living at high elevations. Using novel dice-CT imaging, I also analysed hemipenial morphology in minute detail and described a new ornament, the “cornucula gemina”. Finally, the phenomenon of fluorescence in chameleons was discovered in species belonging to eight of the twelve chameleon genera. The optimal excitation wavelength is in the UV-A spectrum at 353 nm, emitting light with wavelengths from 360 nm to 500 nm, with a maximum at 433 nm (blue spectrum). We showed that the fluorescent patterns result from bony tubercles on the skull are species specific, sexually dimorphic, and occur especially in forest living species. Based on these findings, and also because the colour blue is a conspicuous signal in forest habitats, I hypothesize that chameleons use fluorescence as a constant signal for intraspecific communication supplementing their vibrant body-colour language. Further, as-of-yet unpublished examples suggest that fluorescence is more common in squamates and might be an interesting field for further studies.Hintergrund Madagaskar ist bekannt fĂŒr seine BiodiversitĂ€t und seine außergewöhnlich hohe Endemismusrate. Dies gilt vor allem fĂŒr ChamĂ€leons, da auf der Insel beinahe die HĂ€lfte aller Arten weltweit vorkommt. Die Erforschung dieser Artenvielfalt begann mit dem berĂŒhmten Georges Cuvier, der die ersten madagassischen ChamĂ€leons im Jahre 1829 beschrieb. Seit damals haben sich die QualitĂ€t der Artbeschreibungen und folglich auch das Artkonzept substanziell verĂ€ndert. Beruhten die ersten Beschreibungen noch auf wenigen Merkmalen der Ă€ußeren Morphologie, so werden heutzutage die gesammelten Exemplare gewöhnlich erst sequenziert und ihre Artzugehörigkeit anhand von genetischen AbstĂ€nden bewertet. Auf diese Weise stellte eine vorangegangene Studie fest, dass die Calumma-nasutum-Gruppe, die aus kleinen ChamĂ€leons mit gewöhnlich einem Nasenfortsatz auf der Schnauze besteht, insgesamt 33 tiefe mitochondriale Linien enthĂ€lt. Nur sieben davon gehörten zu bereits beschriebenen Arten, wodurch noch 26 Linien als operational taxonomic units (OTUs) ĂŒbrig blieben. In Zeiten der DNA-geleiteten Taxonomie und der Verwendung von Algorithmen zur Artabgrenzung stehen Taxonomen neuen Herausforderungen gegenĂŒber, eine Art zu beschreiben und ein sogenanntes „oversplitting“ zu vermeiden. In dieser Dissertation bewerte ich am Beispiel der Revision der Calumma-nasutum-Gruppe die Bedeutung von mitochondrialen Linien zur Artabgrenzung und stelle Mikrocomputertomografie (Mikro-CT) als zusĂ€tzliches Werkzeug der integrativen Taxonomie vor. Der zweite Teil handelt von der Entdeckung des PhĂ€nomens der weitverbreiteten Fluoreszenz bei ChamĂ€leons. Biofluoreszenz wurde bisher nur selten bei Landvertebraten nachgewiesen, ist jedoch bei einigen Meeresorganismen gut bekannt, welche die Fluoreszenz unter anderem zur intraspezifischen Kommunikation nutzen. Da ChamĂ€leons ebenfalls optisch kommunizieren, könnten die Fluoreszenzmuster als zusĂ€tzliches Signal zur Arterkennung dienen. Methoden und Vorgehensweise Um Arten der Calumma-nasutum-Gruppe (wieder) zu beschreiben, nutzte ich einen integrativen taxonomischen Ansatz mit fĂŒnf Beweislinien (siehe unten im Detail): Äußere Morphologie, Mikro-CT-Scans der SchĂ€del, dice-CT-Scans der Hemipenisse, Sequenzen der mitochondrialen Gene und Sequenzen der Kerngene. Einige Arten der Calumma-nasutum-Gruppe waren bisher wenig charakterisiert, da ihre Originalbeschreibung ĂŒber einhundert Jahre zurĂŒcklag und genaue TypuslokalitĂ€ten fehlten oder weil der Holotypus ein Jungtier ist. Diese Arten wurden unter Verwendung von mikro-CT-Scans und genauer Untersuchung der Ă€ußeren Morphologie wiederbeschrieben. Mit Hilfe diagnostischer Merkmale des SchĂ€dels wurden die alten Holotypen kĂŒrzlich gesammelten und sequenzierten Individuen zugeordnet. ZusĂ€tzlich wurden zum ersten Mal Mikro-CT-Scans genutzt, um dreidimensionale Modelle von ChamĂ€leonhemipenissen zu entwerfen. Zur Vorbereitung des Scans wurde jeder Hemipenis vom Tier abgetrennt und in Lugolscher Lösung fĂŒr mehrere Tage eingelegt, um den Kontrast dieses weichen Gewebes beim Röntgen zu erhöhen. Diese Methode nennt sich dice-CT und die resultierenden Scans bieten eine objektivere und detailliertere Darstellung des Hemipenis als die herkömmlichen zweidimensionalen Zeichnungen. Weiterhin wurden Sequenzen von mitochondrialen Genen (ND2) und Kerngenen (CMOS) fĂŒr die meisten der hier neu beschriebenen Arten analysiert. Um Vergleichbarkeit, weltweiten Zugang und schnellen taxonomischen Fortschritt zu garantieren, wurden alle neuen Arten bei ZooBank unter einer LSID-Nummer registriert, ihre Sequenzen bei GenBank hochgeladen und alle taxonomischen Arbeiten in open-access-Journalen veröffentlicht. Zur Untersuchung der Fluoreszenz bei ChamĂ€leons benutzten wir ein Fluorimeter, um die Anregungs- und Emissionsspektren zu messen und die Quantenausbeute zu berechnen. Die Verteilung der fluoreszierenden Tuberkel wurde mit Fotos unter UV-Beleuchtung dokumentiert und ihr knöcherner Ursprung mit Mikro-CT und Transmissionselektronenmikroskopie der histologischen Schnitten untersucht. Schlussfolgerungen Im taxonomischen Teil dieser Dissertation wurden acht ChamĂ€leonarten neu beschrieben, die beinahe 4% aller bisher bekannten Arten der Familie Chamaeleonidae ausmachen: "Calumma emelinae", C. gehringi, C. juliae, C. lefona, "C. ratnasariae", C. roaloko, "C. tjiasmantoi", und C. uetzi (siehe Kapitel 3.1.2, 3.1.3, 3.1.4, 3.1.5). Weiterhin wurde eine Art, C. radamanus (Mertens, 1933), revalidiert. Es wurden fĂŒnf Arten wiederbeschrieben: C. boettgeri (Boulenger, 1888), C. fallax (Mocquard, 1900), C. guibei (Hillenius, 1959), C. linotum (MĂŒller, 1924), und C. nasutum (DumĂ©ril & Bibron, 1836), und die Weibchen von C. vatosoa Andreone, Mattioli, Jesu & Randrianirina, 2001 wurden erstmals beschrieben. Mit Verwendung eines integrativ taxonomischen Ansatzes konnte ich zeigen, dass Algorithmen zur Artabgrenzung, die allein auf mitochondrialen Gensequenzen basieren, die eigentliche Anzahl an Arten deutlich ĂŒberschĂ€tzen. Mikro-CT bewĂ€hrte sich um die SchĂ€delmorphologie zu untersuchen, welche sich besser zur Artabgrenzung eignete als die sehr variablen Ă€ußeren Merkmale. Außerdem konnten mit Hilfe dieses Werkzeugs auch Frontoparietalfenster gefunden werden. Diese SchĂ€delöffnungen wurden nur bei ChamĂ€leons aus Montangebieten nachgewiesen und könnten eine besondere Anpassung an den Lebensraum darstellen. Das neuartige Dice-CT-Verfahren ermöglichte die Hemipenismorphologie im kleinsten Detail zu untersuchen und auch ein neues Ornament, die “cornucula gemina”, zu beschreiben. Schließlich wurde bei Arten aus acht der zwölf ChamĂ€leongattungen das PhĂ€nomen der Fluoreszenz entdeckt. Die optimale AnregungswellenlĂ€nge liegt im UV-A-Spektrum bei 353 nm und Licht mit WellenlĂ€ngen von 360 bis 500 nm, mit einem Maximum bei 433 nm im blauen Spektrum, wird emittiert. Wir konnten zeigen, dass die Fluoreszenzmuster von knöchernen Tuberkeln des SchĂ€dels stammen, artspezifisch und sexualdimorph sind und vor allem bei waldbewohnenden Arten vorkommen. Darauf aufbauend und auch, da die Farbe Blau im Wald ein auffallendes Signal darstellt, formuliere ich die Hypothese, dass ChamĂ€leons die Fluoreszenz als konstantes Signal zur intraspezifischen Kommunikation nutzen und damit ihre Farbensprache ergĂ€nzen. Nicht-publizierte Beispiele lassen außerdem vermuten, dass Fluoreszenz bei Squamaten weiter verbreitet ist und ein interessantes Gebiet fĂŒr nachfolgende Studien darstellen könnte

    Systematics and signalling of Madagascan chameleons of the Calumma nasutum group

    Get PDF
    Background Madagascar is famous for its biodiversity and exceptional degree of endemism, especially in chameleons, hosting almost half of the world’s species. The exploration of its species diversity started with the famous Georges Cuvier who described the first Madagascan chameleons in 1829. Since then, the quality of species descriptions and, subsequently, the species concepts have substantially changed. While the first descriptions were based on a few characters of the external morphology only, today the collected specimens are usually DNA barcoded and their taxonomic status is evaluated based on genetic distances as a first step. In doing so, a previous molecular study of the Calumma nasutum group, which are small chameleons with a rostral appendage on the snout tip in most species, resulted in an impressive 33 deep mitochondrial lineages. Only seven of these corresponded to named species leaving 26 lineages as operational taxonomic units (OTUs). In times of DNA based taxonomy and species delimitation algorithms taxonomists face new challenges of how to describe a species and to avoid oversplitting. In this dissertation I evaluate, based on a taxonomic revision of Calumma nasutum group, the significance of mitochondrial lineages for species delimitation and promote micro-computed tomography (micro-CT) as an additional tool for integrative taxonomy. The second part deals with the discovery of the phenomenon of widespread fluorescence in chameleons. Biofluorescence is only rarely found in land vertebrates, so far, but has been reported for several marine organisms where it is used, inter alia, for intraspecific communication. As chameleons also communicate visually, the fluorescent pattern might work as an additional signal for species recognition. Methods and Procedure To describe (or redescribe) species of the Calumma nasutum group, I followed an integrative taxonomic approach incorporating five lines of evidence (for details, see below): External Morphology, micro-CT-scans of the skulls, dice-CT scans of the hemipenes, mitochondrial gene sequences (ND2), and nuclear gene sequences (CMOS). In the Calumma nasutum group a number of species have remained poorly characterized, because their original descriptions date to over a century ago and lack precise locality data, or because the holotype is a juvenile specimen. These species were redescribed here using a combination of micro-CT scans and detailed study of external morphology. With the help of diagnostic characters of the skull, the old type specimens were matched to recently collected and sequenced specimens. Additionally, micro-CT scanning was used for the first time to produce 3-dimensional models of chameleon hemipenes. In preparation for scanning, each hemipenis was removed from the specimen and immersed in iodine solution for several days to enhance the contrast when X-raying this soft tissue. This method is called dice-CT, and the resulting scans provide a more objective and detailed illustration of the hemipenes than the conventional 2-dimensional drawings. Further, sequences of mitochondrial (ND2) and nuclear (CMOS) genes were analysed for most of the new species described here. To provide comparability, access, and fast taxonomic progress, all new species were registered at ZooBank with an LSID number, their sequences were uploaded to GenBank, and all taxonomic acts were published in open access journals. To study fluorescence in chameleons, we used a fluorimeter to measure the excitation and emission spectra and to calculate the quantum yield for the intensity of fluorescence. The distribution of the fluorescent tubercles was recorded with photographs under UV light illumination, and the bony origins of fluorescence were studied using micro-CT and Transmission Electron microscopy of histological sections. Conclusions The taxonomic part or this dissertation resulted in the description of eight new chameleon species, "Calumma emelinae", C. gehringi, C. juliae, C. lefona, "C. ratnasariae", C. roaloko, "C. tjiasmantoi", and C. uetzi (see chapter 3.1.2, 3.1.3, 3.1.4, 3.1.5), contributing nearly 4% of all known species of the family Chamaeleonidae. Furthermore, one species, C. radamanus (Mertens, 1933) was revalidated, five species, C. boettgeri (Boulenger, 1888), C. fallax (Mocquard, 1900), C. guibei (Hillenius, 1959), C. linotum (MĂŒller, 1924), and C. nasutum (DumĂ©ril & Bibron, 1836) were redescribed, and the females of C. vatosoa Andreone, Mattioli, Jesu & Randrianirina, 2001 were described for the first time. Using an integrative taxonomic approach, I showed that current species delimitation algorithms based on mitochondrial gene sequences alone greatly overestimate the actual number of species. Micro-CT proved essential for analysing skull morphology, which resulted more appropriate for species delimitation than some highly variable external characters. Further, this tool enabled to find frontoparietal fenestrae, which are cranial openings of potential adaptive importance found only in chameleon species living at high elevations. Using novel dice-CT imaging, I also analysed hemipenial morphology in minute detail and described a new ornament, the “cornucula gemina”. Finally, the phenomenon of fluorescence in chameleons was discovered in species belonging to eight of the twelve chameleon genera. The optimal excitation wavelength is in the UV-A spectrum at 353 nm, emitting light with wavelengths from 360 nm to 500 nm, with a maximum at 433 nm (blue spectrum). We showed that the fluorescent patterns result from bony tubercles on the skull are species specific, sexually dimorphic, and occur especially in forest living species. Based on these findings, and also because the colour blue is a conspicuous signal in forest habitats, I hypothesize that chameleons use fluorescence as a constant signal for intraspecific communication supplementing their vibrant body-colour language. Further, as-of-yet unpublished examples suggest that fluorescence is more common in squamates and might be an interesting field for further studies.Hintergrund Madagaskar ist bekannt fĂŒr seine BiodiversitĂ€t und seine außergewöhnlich hohe Endemismusrate. Dies gilt vor allem fĂŒr ChamĂ€leons, da auf der Insel beinahe die HĂ€lfte aller Arten weltweit vorkommt. Die Erforschung dieser Artenvielfalt begann mit dem berĂŒhmten Georges Cuvier, der die ersten madagassischen ChamĂ€leons im Jahre 1829 beschrieb. Seit damals haben sich die QualitĂ€t der Artbeschreibungen und folglich auch das Artkonzept substanziell verĂ€ndert. Beruhten die ersten Beschreibungen noch auf wenigen Merkmalen der Ă€ußeren Morphologie, so werden heutzutage die gesammelten Exemplare gewöhnlich erst sequenziert und ihre Artzugehörigkeit anhand von genetischen AbstĂ€nden bewertet. Auf diese Weise stellte eine vorangegangene Studie fest, dass die Calumma-nasutum-Gruppe, die aus kleinen ChamĂ€leons mit gewöhnlich einem Nasenfortsatz auf der Schnauze besteht, insgesamt 33 tiefe mitochondriale Linien enthĂ€lt. Nur sieben davon gehörten zu bereits beschriebenen Arten, wodurch noch 26 Linien als operational taxonomic units (OTUs) ĂŒbrig blieben. In Zeiten der DNA-geleiteten Taxonomie und der Verwendung von Algorithmen zur Artabgrenzung stehen Taxonomen neuen Herausforderungen gegenĂŒber, eine Art zu beschreiben und ein sogenanntes „oversplitting“ zu vermeiden. In dieser Dissertation bewerte ich am Beispiel der Revision der Calumma-nasutum-Gruppe die Bedeutung von mitochondrialen Linien zur Artabgrenzung und stelle Mikrocomputertomografie (Mikro-CT) als zusĂ€tzliches Werkzeug der integrativen Taxonomie vor. Der zweite Teil handelt von der Entdeckung des PhĂ€nomens der weitverbreiteten Fluoreszenz bei ChamĂ€leons. Biofluoreszenz wurde bisher nur selten bei Landvertebraten nachgewiesen, ist jedoch bei einigen Meeresorganismen gut bekannt, welche die Fluoreszenz unter anderem zur intraspezifischen Kommunikation nutzen. Da ChamĂ€leons ebenfalls optisch kommunizieren, könnten die Fluoreszenzmuster als zusĂ€tzliches Signal zur Arterkennung dienen. Methoden und Vorgehensweise Um Arten der Calumma-nasutum-Gruppe (wieder) zu beschreiben, nutzte ich einen integrativen taxonomischen Ansatz mit fĂŒnf Beweislinien (siehe unten im Detail): Äußere Morphologie, Mikro-CT-Scans der SchĂ€del, dice-CT-Scans der Hemipenisse, Sequenzen der mitochondrialen Gene und Sequenzen der Kerngene. Einige Arten der Calumma-nasutum-Gruppe waren bisher wenig charakterisiert, da ihre Originalbeschreibung ĂŒber einhundert Jahre zurĂŒcklag und genaue TypuslokalitĂ€ten fehlten oder weil der Holotypus ein Jungtier ist. Diese Arten wurden unter Verwendung von mikro-CT-Scans und genauer Untersuchung der Ă€ußeren Morphologie wiederbeschrieben. Mit Hilfe diagnostischer Merkmale des SchĂ€dels wurden die alten Holotypen kĂŒrzlich gesammelten und sequenzierten Individuen zugeordnet. ZusĂ€tzlich wurden zum ersten Mal Mikro-CT-Scans genutzt, um dreidimensionale Modelle von ChamĂ€leonhemipenissen zu entwerfen. Zur Vorbereitung des Scans wurde jeder Hemipenis vom Tier abgetrennt und in Lugolscher Lösung fĂŒr mehrere Tage eingelegt, um den Kontrast dieses weichen Gewebes beim Röntgen zu erhöhen. Diese Methode nennt sich dice-CT und die resultierenden Scans bieten eine objektivere und detailliertere Darstellung des Hemipenis als die herkömmlichen zweidimensionalen Zeichnungen. Weiterhin wurden Sequenzen von mitochondrialen Genen (ND2) und Kerngenen (CMOS) fĂŒr die meisten der hier neu beschriebenen Arten analysiert. Um Vergleichbarkeit, weltweiten Zugang und schnellen taxonomischen Fortschritt zu garantieren, wurden alle neuen Arten bei ZooBank unter einer LSID-Nummer registriert, ihre Sequenzen bei GenBank hochgeladen und alle taxonomischen Arbeiten in open-access-Journalen veröffentlicht. Zur Untersuchung der Fluoreszenz bei ChamĂ€leons benutzten wir ein Fluorimeter, um die Anregungs- und Emissionsspektren zu messen und die Quantenausbeute zu berechnen. Die Verteilung der fluoreszierenden Tuberkel wurde mit Fotos unter UV-Beleuchtung dokumentiert und ihr knöcherner Ursprung mit Mikro-CT und Transmissionselektronenmikroskopie der histologischen Schnitten untersucht. Schlussfolgerungen Im taxonomischen Teil dieser Dissertation wurden acht ChamĂ€leonarten neu beschrieben, die beinahe 4% aller bisher bekannten Arten der Familie Chamaeleonidae ausmachen: "Calumma emelinae", C. gehringi, C. juliae, C. lefona, "C. ratnasariae", C. roaloko, "C. tjiasmantoi", und C. uetzi (siehe Kapitel 3.1.2, 3.1.3, 3.1.4, 3.1.5). Weiterhin wurde eine Art, C. radamanus (Mertens, 1933), revalidiert. Es wurden fĂŒnf Arten wiederbeschrieben: C. boettgeri (Boulenger, 1888), C. fallax (Mocquard, 1900), C. guibei (Hillenius, 1959), C. linotum (MĂŒller, 1924), und C. nasutum (DumĂ©ril & Bibron, 1836), und die Weibchen von C. vatosoa Andreone, Mattioli, Jesu & Randrianirina, 2001 wurden erstmals beschrieben. Mit Verwendung eines integrativ taxonomischen Ansatzes konnte ich zeigen, dass Algorithmen zur Artabgrenzung, die allein auf mitochondrialen Gensequenzen basieren, die eigentliche Anzahl an Arten deutlich ĂŒberschĂ€tzen. Mikro-CT bewĂ€hrte sich um die SchĂ€delmorphologie zu untersuchen, welche sich besser zur Artabgrenzung eignete als die sehr variablen Ă€ußeren Merkmale. Außerdem konnten mit Hilfe dieses Werkzeugs auch Frontoparietalfenster gefunden werden. Diese SchĂ€delöffnungen wurden nur bei ChamĂ€leons aus Montangebieten nachgewiesen und könnten eine besondere Anpassung an den Lebensraum darstellen. Das neuartige Dice-CT-Verfahren ermöglichte die Hemipenismorphologie im kleinsten Detail zu untersuchen und auch ein neues Ornament, die “cornucula gemina”, zu beschreiben. Schließlich wurde bei Arten aus acht der zwölf ChamĂ€leongattungen das PhĂ€nomen der Fluoreszenz entdeckt. Die optimale AnregungswellenlĂ€nge liegt im UV-A-Spektrum bei 353 nm und Licht mit WellenlĂ€ngen von 360 bis 500 nm, mit einem Maximum bei 433 nm im blauen Spektrum, wird emittiert. Wir konnten zeigen, dass die Fluoreszenzmuster von knöchernen Tuberkeln des SchĂ€dels stammen, artspezifisch und sexualdimorph sind und vor allem bei waldbewohnenden Arten vorkommen. Darauf aufbauend und auch, da die Farbe Blau im Wald ein auffallendes Signal darstellt, formuliere ich die Hypothese, dass ChamĂ€leons die Fluoreszenz als konstantes Signal zur intraspezifischen Kommunikation nutzen und damit ihre Farbensprache ergĂ€nzen. Nicht-publizierte Beispiele lassen außerdem vermuten, dass Fluoreszenz bei Squamaten weiter verbreitet ist und ein interessantes Gebiet fĂŒr nachfolgende Studien darstellen könnte

    Widespread bone-based fluorescence in chameleons

    Get PDF
    Fluorescence is widespread in marine organisms but uncommon in terrestrial tetrapods. We here show that many chameleon species have bony tubercles protruding from the skull that are visible through their scales, and fluoresce under UV light. Tubercles arising from bones of the skull displace all dermal layers other than a thin, transparent layer of epidermis, creating a 'window' onto the bone. In the genus Calumma, the number of these tubercles is sexually dimorphic in most species, suggesting a signalling role, and also strongly reflects species groups, indicating systematic value of these features. Co-option of the known fluorescent properties of bone has never before been shown, yet it is widespread in the chameleons of Madagascar and some African chameleon genera, particularly in those genera living in forested, humid habitats known to have a higher relative component of ambient UV light. The fluorescence emits with a maximum at around 430 nm in blue colour which contrasts well to the green and brown background reflectance of forest habitats. This discovery opens new avenues in the study of signalling among chameleons and sexual selection factors driving ornamentation

    Splitting and lumping: An integrative taxonomic assessment of Malagasy chameleons in the Calumma guibei complex results in the new species C. gehringi sp. nov.

    No full text
    Calumma guibei (Hillenius, 1959) is a high-altitude chameleon species from the Tsaratanana massif in north Madagascar. Since its description was based on a juvenile holotype, its taxonomic identity is uncertain and little is known about its morphology. A recent molecular study discovered several deep mitochondrial clades in the Tsaratanana region assigned to C. guibei and C. linotum (MĂŒller, 1924). In this paper we study the taxonomy of these clades and clarify the identity of C. guibei. Using an integrative taxonomic approach including pholidosis, morphological measurements, osteology, and molecular genetics we redescribe C. guibei and describe the new species C. gehringi sp. nov. which comprises two deep mitochondrial lineages. In terms of external morphology the new species differs from C. guibei by an elevated rostral crest, the shape of the notch between the occipital lobes (slightly connected vs. completely separated), presence of a dorsal and caudal crest in males (vs. absence), and a longer rostral appendage in the females. Additionally, we analysed skull and hemipenis morphology using micro-X-ray computed tomography (micro-CT) scans and discovered further differences in skull osteology, including a large frontoparietal fenestra, and separated prefrontal fontanelle and naris in C. guibei. Furthermore, we provide a comparison of micro-CT scans with traditional radiographs of the skull. The hemipenes have ornaments of two pairs of long pointed cornucula gemina (new term), two pairs of dentulous rotulae, and a pair of three-lobed rotulae, and are similar in both species, but significantly different from other species in the C. nasutum group. Geographically, C. guibei has been recorded reliably from the higher elevations of the Tsaratanana Massif above 1580 m a.s.l., whereas C. gehringi sp. nov. is found at mid-altitude (730–1540 m a.s.l.) in Tsaratanana and the surrounding area

    Neon-green fluorescence in the desert gecko Pachydactylus rangei caused by iridophores

    No full text
    Abstract Biofluorescence is widespread in the natural world, but only recently discovered in terrestrial vertebrates. Here, we report on the discovery of iridophore-based, neon-green flourescence in the gecko Pachydactylus rangei, localised to the skin around the eyes and along the flanks. The maximum emission of the fluorescence is at a wavelength of 516 nm in the green spectrum (excitation maximum 465 nm, blue) with another, smaller peak at 430 nm. The fluorescent regions of the skin show large numbers of iridophores, which are lacking in the non-fluorescent parts. Two types of iridophores are recognized, fluorescent iridophores and basal, non-fluorescent iridophores, the latter of which might function as a mirror, amplifying the omnidirectional fluorescence. The strong intensity of the fluorescence (quantum yield of 12.5%) indicates this to be a highly effective mechanism, unique among tetrapods. Although the fluorescence is associated with iridophores, the spectra of emission and excitation as well as the small Stokes shifts argue against guanine crystals as its source, but rather a rigid pair of fluorophores. Further studies are necessary to identify their morphology and chemical structures. We hypothesise that this nocturnal gecko uses the neon-green fluorescence, excited by moonlight, for intraspecific signalling in its open desert habitat

    No longer single! Description of female Calumma vatosoa (Squamata, Chamaeleonidae) including a review of the species and its systematic position

    No full text
    Calumma vatosoa is a Malagasy chameleon species that has until now been known only from the male holotype and a photograph of an additional male specimen. In this paper we describe females of the chameleon Calumma vatosoa for the first time, as well as the skull osteology of this species. The analysed females were collected many years before the description of C. vatosoa, and were originally described as female C. linotum. According to external morphology, osteology, and distribution these specimens are assigned to C. vatosoa. Furthermore we discuss the species group assignment of C. vatosoa and transfer it from the C. furcifer group to the C. nasutum group. A comparison of the external morphology of species of both groups revealed that C. vatosoa has a relatively shorter distance from the anterior margin of the orbit to the snout tip, more heterogeneous scalation at the lower arm, a significantly lower number of supralabial and infralabial scales, and a relatively longer tail than the members of the C. furcifer group. These characters are, however, in line with the species of the C. nasutum group. In addition the systematic position of C. peyrierasi also discussed, based on its morphology

    The smallest 'true chameleon' from Madagascar: a new, distinctly colored species of the Calumma boettgeri complex (Squamata, Chamaeleonidae)

    Get PDF
    On a recent expedition to eastern Madagascar, we discovered a distinct new species of the genus Calumma that we describe here using an integrative approach combining morphology, coloration, osteology and molecular genetics. Calumma roaloko sp. n. has a dermal rostral appendage and occipital lobes, and belongs to the C. boettgeri complex, within the Madagascar-endemic phenetic C. nasutum species group. It is readily distinguished from other species of the C. boettgeri complex by a characteristic two-toned body coloration and small body size with a snout-vent length of 45.6 mm in an adult male. The osteology of the skull, with a prominent maxilla and broad parietal, is similar to the closest related species, C. uetzi. Analysis of uncorrected genetic distances within the C. nasutum group using the mitochondrial gene ND2 shows a minimum pairwise distance of 11.98% to C. uetzi from the Sorata massif and Marojejy National Park >500 km north of the type locality of C. roaloko sp. n.. Given an apparently small range (potentially <300 km(2)), located entirely outside of any nationally-protected areas, we recommend this new species be classified as Endangered under criterion B1ab(iii) of the IUCN Red List. The discovery of clearly distinct species like C. roaloko sp. n. in an area of Madagascar that is comparatively thoroughly surveyed highlights the critical role of continued field surveys for understanding the true extent of Madagascar's spectacular biodiversity.Global Wildlife Conservation [5019-0096]Open access journal.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore